
Proceedings of the 17
th

 Association of Computing Machinery Scientific Applications Conference.

Madrid, Spain. March 10-14, 2002.

Iterative Querying in Web-Based Database Applications

Ramzi A. Haraty and Mazen Hamdoun
Lebanese American University

P.O. Box 13-5053 Chouran

Beirut, Lebanon 1102 2801

Email: rharaty@lau.edu.lb

Abstract

Web applications are increasingly relying on databases. The

traditional method offered by most web sites of submitting a

query across the Internet and getting a response from a server

packed in a Hyper Text Markup Language page is no longer

satisfying [1][3][4][5]. This is due to the result set: it is often too

large or empty. This forces the user to try and guess which

constraints should be relaxed or tightened in order to obtain the

desired result set. And so, the user goes through several

submit/response cycles. Web applications that require this sort

of interactive exploration of databases need to use a model that

is different from the submit/respond model described above. In

this work, we propose an iterative querying model that

integrates querying with result browsing.

Keywords: Browsing, iterative querying, result set, and

web-based database applications.

1. Introduction

In traditional databases, queries are rigid in that they are

intended for asking very specific questions [2]. The results are

interesting no matter what the result set is. The individual query

itself is the goal. On the other hand, when we are interested in

exploration the goal is locating particular records of interest. To

do this, we need to provide the user with a combination of result

browsing and searching so that he/she can see the query and its

results simultaneously. As the user changes the query

constraints, the impact on the result set should be immediate.

The aim of this work is to provide how the overall design of

such a system might be with some stress on the user interface,

which is a key element in the exploration process. The rest of

the paper is organized as follows: section 2 presents the user

interface. Section 3 details the overall system design. Section 4

concludes the paper.

Permission to make digital or hard copies of all

or part of this work for personal or classroom

use is granted without fee provided that copies

are not made or distributed for profit or

commercial advantage, and that copies bear this

notice and the full citation on the first page.

To copy otherwise, to republish, to post on

servers or to redistribute to lists, requires

prior specific permission and/or a fee.

SAC 2002, Madrid, Spain

© 2002 ACM 1-58113-445-2/02/03. . .$5.00

2. User Interface

The user interface plays a key role in enhancing the experience

of the user. Records are displayed in a scrollable list format with

a separate column for each numeric and categorical attribute as

shown in Figure 1. At the top of each column is a title bar

showing the name of the attribute. The names of the attributes

are obtained from the database catalog. Beneath each of these

titles is an "attribute control" used for specifying attribute

restrictions. Categorical attributes are represented by select lists

that allow users to (de) select (un) desired values. Numeric

attributes are represented by vertical sliders, which may be

resized and dragged to specify desired ranges. Initially, these

attribute controls are maximized to include the full value-range

of each attribute. Immediately, a user can see how many records

are available, the value range of each attribute, and actual

matching records. At any stage, the user can scroll through the

list of records in the result set and can instantaneously change

the sort order of the record list by clicking on the title bar of any

column.

Repetitive Querying

File Edit Options ...

Manufacturer Model Price Transmission

Audi

BMW

Buick

Chev rolet

Quattro

318is

320i

Regal

$ 7000

$ 9000

$ 10000

$ 15000

 Automatic

Manual

Semi-Automatic

Sequential

Manual

Manual

$13749Camaro

Automatic

$14500

525i $10500BMW

Chevrolet

BMW 325is

Figure 1. The Graphical User Interface.

There is no "submit" button. As the user adjusts the attribute

controls under each column's heading, the records in the view

pane are continuously updated to reflect new restrictions. The

record count is also continuously updated during these

adjustments. This lets the user know immediately if the query is

becoming too restrictive and whether or not the user should
continue adding specifications.

Contrast this iterative querying model with the conventional

form-based approach [3]. The user would be entering

mailto:rharaty@lau.edu.lb

Proceedings of the 17
th

 Association of Computing Machinery Scientific Applications Conference.

Madrid, Spain. March 10-14, 2002.

requirements into a static query page and would not know the

result of the actions until the query is submitted and the

response is received. If the query was restrictive, the user would

most likely be presented with a short message indicating that no

records matched the criteria, and that the user should try again.

If the query was too loose, the user would probably be shown a

single large listing of all matching records, or more likely, a

series of linked pages containing twenty or so matching records

per page. In both cases, no information is given as to how the

query is to be relaxed or tightened, forcing the user to repeat this

submit/response cycle as the user adjusts the requirements

unaided. Each such cycle requires the attention of the web and

database servers, not to forget a round-trip through the network.

In the case of iterative querying, empty result sets can be easily

avoided or backed out because the user can actually see the

result set change as the query is tightened or relaxed.

2.1 Exploration Based on Example Records

Since query results are always visible, this allows a Query-By-

Example [6] capability not available in most search interfaces.

Rather than explicitly specifying a desired range of attribute

values, a user can select example records to direct the

exploration. This type of querying can be very useful in

situations where the user may not be too knowledgeable about

the domain, but knows of some sample records of interest. For

example, a user who does not know about horsepower or what a

"fast" 0-100-kph time is can still search for sporty cars by

selecting several known examples. These records implicitly

define a query region comprising the smallest hypercube that
contains all the selected data points.

2.2 Exploration Based on Similarity

In addition to querying by example, we can allow sorting by

example as well. This is essentially similarity search, except that

instead of treating similarity as a separate stand-alone query like

some search engines do for web pages (e.g., Excite) [7], it is

integrated into the existing view. After selecting one or more

sample records, the user can click a button and sort all the

records by how "near" they are to the selected examples.

Nearness is based on some similarity model. The similarity

scores are then displayed in a new column labeled "Rank" which
appears after the rank button is pressed.

3. System Design

We now describe the details of how we implement iterative

querying. In order to obtain interactive response times, we

exploit several key observations. First we must cache data

records in the local client. There is little chance of interactive

response times unless the interaction between the user and data

is moved off of the server and out of the network. While this

does place a memory requirement on the client, it offers an

advantage beyond that of just faster access - the cache can be

tailored to the user and the particular task of data exploration.

An initial query representing the set of data to be explored is

used to transfer data from the server-side database. This data is

then cached using special data structures for further exploration.

In cases where users may wish to explore data outside the

current cache, techniques such as semantic data caching can be
used [8].

Fortunately, while the total size of the underlying database can

be huge, the scope of the data over which a user performs

interactive exploration for some task is often limited enough that

corresponding records are able to fit in a reasonably sized cache.

For example, in web-based product exploration applications, a

user will explore options within one product category at a time

and not across product categories. The active set thus typically
consists of records in thousands and not millions.

We also take advantage of the fact that there is always a notion

of a current state. This state is represented by the current settings

of the attribute controls (i.e., the "query") and the corresponding

set of matching records. Every adjustment of these controls

represents a minor change to an existing query. Rather than

execute the new query entirely from scratch, we only need to

update the current results to reflect the change. This can be

made extremely efficient because of another observation: there

is only one mouse. The user can adjust the restrictions of only
one attribute at any given instance.

By taking advantage of these observations, we are able to

exhibit extremely fast response times, even with datasets

containing hundreds of attributes and hundreds of thousands of
records.

3.1 Architecture

Figure 2 gives a high-level overview of the proposed

architecture. The DataColumn objects represent the data cache

with each DataColumn representing one column of attribute

data. DataGroup maintains this cache. Observe that with this

design, data for different attributes can be loaded and processed

asynchronously. Thus, during data loading, the user can see

column data appear progressively, rather than having to wait for

the entire dataset. Furthermore, once a column of input data has

been loaded and its DataColumn object created, the user may

immediately begin to restrict or sort on that column, even as
other columns are still being loaded.

ListRenderer represents the Graphical User Interface (GUI). It is

responsible for rendering the current set of matching records, as

well as passing user changes in attribute restrictions to the core

engine. This interaction is handled by events and explicit

Application Programming Interface (API) calls.

The final piece labeled Core encompasses the entire design. In a

Java implementation, this is the hosting applet that must deal

with menus, graphical layout and other details. It is also

responsible for determining what data source to use and what

attributes to select. This is handled through user interaction. The

Core component is also responsible for retrieving the data from

the data source. It can do so through a standard API we call the

DataPump. This design allows us to support various data

sources by simply plugging in a different implementation of the

DataPump API. In the particular instance shown in Figure 2, the

Proceedings of the 17
th

 Association of Computing Machinery Scientific Applications Conference.

Madrid, Spain. March 10-14, 2002.

DataPump communicates via HTTP to a Java Servlet running

on a web server. This Servlet uses JDBC to communicate with

the database. When Core requests data via the DataPump API,

the DataPump object passes the request to the Servlet, which in

turn issues a query to the database. Data is returned to Core

from the DataPump in column-order rather than row-order. This

allows each column to be converted into DataColumn objects

independently and asynchronously. How data is transferred

between the server and the DataPump (row-order vs. column-

order, synchronous vs. asynchronous) is entirely up to the

DataPump implementation.

For concreteness, we will be describing the design using the

example dataset shown in Figure 3. This dataset represents car

listings and contains attribute data for the Make of each car and

the Distance in miles between the user and seller locations.

Figure 2. Architecture of the Model.

Note that this example demonstrates how the data received and

cached by the system can be tailored for a particular user -

Distance is a derived attribute that depends upon the user and

would not exist in the server's database. Each record in this

dataset is uniquely identified by an integer in the range [0, n-1],

called a record identifier, or RID. These RIDs are not part of the

dataset and do not correspond to any database or server-side

identifiers. They are simply internal IDs used in the cache,
assigned sequentially as records are loaded from the server.

RID Make Distance

0 Ford 23

1 Honda 3

2 Ford 537

3 Chrysler 117

4 Honda 64

5 Honda 8

6 Chrysler 363

7 Ford 192

8 BMW 41

9 Honda 89

10 BMW 207

Figure 3. A Dataset Example.

3.1.1 DataColumns

Each DataColumn is responsible for caching and indexing one

attribute's worth of data. DataColumns consist of two basic

components: an array of data values indexed by record

identifier, and a RID-list. The RID-list contains RIDs sorted by

their corresponding attribute value. RID-lists are required for

performing fast attribute restrictions, but offer the additional

benefit of pre-computed sorts. The DataColumn objects differ

for numeric and categorical data types.

Numeric DataColumns

For numeric attributes, we allocate an integer or float array and

copy incoming data values into it. At the same time, we allocate

an integer array for the RID-list and store the RID values in

order (from 0 to n-1, where n is the total number of records).

The RID-list is then sorted by the corresponding attribute values,

resulting in a final DataColumn object like the one shown in

Figure 4. Observe that Data [RID-list [i]] gives the value of the
ith item in the sorted list of data values.

Categorical DataColumns

Categorical DataColumns are somewhat more involved than

numeric ones. In addition to a data array and a RID-list,

categorical DataColumns also require a hash table and

specialized objects called RIDSets. This is due to the fact that

users need to be able to add and drop arbitrary categorical

values to and from the query. A RIDSet object consists of three

components: a categorical string value, an integer count value,

and an integer index.

RID-list Data

1 23

5 3

0 537

8 117

4 64

9 8

3 363

7 192

10 41

6 89

2 207

Figure 4. RID-list and Data.

We first describe the creation of the categorical data array.

Instead of allocating an array of strings to store the data values,

an array of RIDSet references is allocated. Also allocated is an

empty hash table. As the incoming categorical attribute data is

Core

DataGroup

ListRenderer

Servlet

DataPump

DataColumn DataColumn

Database

Proceedings of the 17
th

 Association of Computing Machinery Scientific Applications Conference.

Madrid, Spain. March 10-14, 2002.

scanned, the hash table with each string value is probed first. If

the probe fails (meaning this is the first time this categorical

value is seen), a new RIDSet object is allocated. The string value

is stored in the new RIDSet (RIDSet.value) and the RIDSet count

(RIDSet.count) is set to one. RIDSet.count will eventually

indicate the number of records that share this categorical value.

The new RIDSet is then stored in the hash table, indexed by the

string value. If the initial probe of the hash table does not fail,

we will get back an existing RIDSet whose string value is the

same as the current record. In this case, the RIDSet.count is

simply incremented by one. In either situation, the current

record's corresponding entry in the data array is set to point to

this new RIDSet. Once the scan of the input data is finished, we

will have exactly one RIDSet object per unique categorical

value, and a fully initialized data array consisting of pointers to

these RIDSets. At this point, the original categorical data can be

discarded. Figure 5 shows this state for a categorical

DataColumn constructed from the Make attribute of our

example dataset. Observe that if the data array is scanned in

order and the string value of each referenced RIDSet is

examined, the values seen will correspond exactly with the
original input data.

Figure 5. Make DataColumn (after input scan).

Now a sorted RID-list for this DataColumn must be built. As a

performance optimization, rather than sort an entire RID-list as

is done for numeric DataColumns, each unique string value (or

key) is collected and then sorted in a separate array. The number

of keys should be smaller than the total number of records. This

improves the sort cost. These keys can be retrieved from the

RIDSets, the hash table, or collected during the data-scanning

phase. In our running example, an array of 4 keys would be

sorted. Next, a temporary variable called index is allocated and

its value is set to zero. We then step through the sorted array of

keys and for each key, the corresponding RIDSet object is

retrieved from the hash table and RIDSet.index is set to be equal

to the index. The index is then incremented by RIDSet.count and

RIDSet.count is set to be equal to zero. Once this scan is

completed, the index value of each RIDSet will indicate where

in the RID-list we store the RIDs of those records that share

RIDSet.value. At this point, the sorted list of keys can be
discarded.

The RID-list is now allocated and a scan of the DataColumn's

data array is initiated. For each RIDSet encountered, the

corresponding record's RID is stored in the RID-list at the

position: RIDSet.index + RIDSet.count. RIDSet.count is then

incremented by one. Figure 6 shows the completed DataColumn

after this scan has finished, along with the temporary sorted

array of key values. Note that the RID-list is now in sorted order

and all the RIDSet.counts have been restored to their original
value.

3.1.2 DataGroup

DataGroup manages the DataColumn objects and is the

mechanism through which the ListRenderer interacts with the

data cache. It also manages two other crucial items - the

Restrictions array and the ResultSize counter. The Restrictions

array is an array of integers, indexed by RID that keeps track of

the number of restrictions against each record. If a record's

restriction count is zero, then that record is unrestricted and

belongs to the current result set; otherwise it does not. The

ResultSize counter indicates the number of unrestricted records

(i.e., the size of the current result set).

Figure 6. Categorical DataColumn for Make (completed).

Initially, all the restriction counts are set to zero and ResultSize

is set to the total number of records. When a record is restricted

along some attribute, its corresponding restriction count is

incremented (even if that record is already restricted along some

other attribute). Likewise, whenever a record is unrestricted

along some attribute, its restriction count is decremented.

Additionally, whenever a record moves out of or into the result

set (i.e., its restriction count is incremented from zero or

decremented to zero), the ResultSize counter is decremented or
incremented accordingly.

3.2 Performance Restrictions

We now discuss how the system uses the data structures just

described to realize instantaneous response time for doing

interactive exploration. As mentioned earlier, every change to an

8

10

3

6

0

2

7

1

4

5

9

Value:

Chrysler

Count: 2
Index:

Value:

Honda

Count: 4
Index:

Ford

Ford

BMW

BMW

Ford

Honda

Honda

Honda

Chrysler

Honda

Chrysler

Hash
Table

Value: Ford

Count: 3

Index:

Value:
BMW

Count: 2

Index:

Input Data Data
RIDSets

Probe

Hash

Table

Value: Ford

Count: 3

Index:

Value: Honda

Count: 4

Index:

Value: Chrysler

Count: 2

Index:

Value: BMW

Count: 2

Index:

BMW

Keys

RID Sets Data

Hash

Table

Value: Ford
Count: 3

Index:

Value: Honda
Count: 4

Index:

Value: Chrysler

Count: 2

Index:

Value: BMW

Count: 2

Index:

BMW

Chrysler

Honda

Ford

RID List

ist

Proceedings of the 17
th

 Association of Computing Machinery Scientific Applications Conference.

Madrid, Spain. March 10-14, 2002.

attribute control in the GUI represents a change in state. A state

change is always a tightening or relaxation of the restriction

bounds on one attribute. The ListRenderer passes down state

changes to the DataGroup object, which in turn passes the state

change down to the appropriate DataColumn object for building
the cache.

Numerical Restrictions

While the attribute controls in the GUI represent the current query

state for the user, internally the current state is represented

differently. The current state for numeric DataColumns is

represented by two values, LowerIndex and UpperIndex. These

values identify a sub range in the DataColumn's RID-list. Since

the RID-list is sorted by attribute value, a sub range in the RID-

list corresponds to a sub range in attribute value. Initially,

LowerIndex is set to 0 and UpperIndex is set to n-1. A state

change on a numeric attribute always means that either the
LowerIndex or the UpperIndex may have to change.

Suppose in our car example, all attributes are currently

unrestricted, meaning that LowerIndex and UpperIndex for the

Distance DataColumn are currently set to 0 and n-1 respectively.

The state change Distance < 100 now arrives indicating that the

UpperIndex must be changed. Initiating a scan backwards

through the RID-list from the current UpperIndex position does

this. For each RID encountered, we lookup its corresponding

attribute value in the data array and compare it to the new upper

bound of 100. If the value lies outside the new boundary, we

update the restriction information in the DataGroup and continue

the scan. We stop once we reach a value that lies within the new

boundary. The current scan position in the RID-list becomes the
new value for UpperIndex.

Categorical Restrictions

For categorical attributes, state changes always involve a single

categorical value being either restricted or unrestricted. For ease

of exposition, assume that each RIDSet in a DataColumn has an

additional Boolean flag that indicates whether or not that value is

currently restricted. Together, these Boolean flags represent the

current state for this attribute. When a state change arrives (e.g.,

Make - {Ford}, i.e., Ford is excluded), we retrieve the

corresponding RIDSet from the hash table. We then scan the

portion of the RID-list marked by RIDSet.index and RIDSet.count

and update the DataGroup statistics accordingly. We also set the

Boolean flag in the RIDSet to indicate the new state. Note that

the RIDSet structures allow us to examine only those RIDs that

are relevant to the restriction.

The processes described above are essentially identical when

relaxing restrictions. The primary difference is in how the

DataGroup statistics are updated and, for numeric DataColumns,

in what direction the RID-list is scanned. It should be emphasized

that when performing restrictions, we need only look at the data

of the attribute involved. Additionally, we only examine data for

those records actually affected by the restriction change. If a

restriction change only affects 50 records, then we only examine

those 50 records in one DataColumn, regardless of the total
number of records or attributes.

4. Conclusion

We presented a model of a database exploration engine that

implements iterative querying in web-based database

applications. It has fast response time even when exploring

hundreds of thousands of records containing hundreds of

attributes. Query borders in our proposal can also be made non-

strict such that records that lie just outside the query region can
still be included in the result set.

The speed at which query changes are processed is enhanced by

processing changes immediately rather than waiting for the user

to hit a submit button. This not only results in small query

changes that can be effected quickly, but also offers the
additional advantage of immediate feedback for the user.

References

[1] Dar, S., Franklin, M., Jonsson, B., Srivastava, D., and Tan, M.

Semantic Data Caching and Replacement. Proceedings of VLDB
96. Mumbai, India, 1996.

[2] Date, C. An Introduction to Database Systems. Addison-
Wesley. Seventh Edition. California. 2000.

[3] Elmasri, R. and Navathe, S. Fundamentals of Database

Systems. Addison-Wesley. Third Edition. California. 2000.

[4] International Business Machines. IBM Intelligent Miner

User's Guide, Version 1 Release 1, SH12-6213-00 edition, June
1996.

[5] Kossmann, D., and Stocker, K. Iterative Dynamic

Programming: A New Class of Query Optimization Algorithms.

ACM Transactions on Database Systems. Volume 25, Issue 1.

March 2000.

[6] Zloof, M. Query-By-Example: The Invocation and Definition

of Tables and Forms: In Douglas S. Kerr, editor, Proceedings on

the International Conference on Very Large Data Bases, pp. 1-24.
ACM. 1975.

[7] http://www.excite.com. 2001.

[8] http://www.yahoo.com. 2001.

Biography

Ramzi A. Haraty is an Assistant Professor of Computer Science

at the Lebanese American University in Beirut, Lebanon. He

received his B.S. and M.S. degrees in Computer Science from

Minnesota State University - Mankato, Minnesota, and his Ph.D.

in Computer Science from North Dakota State University - Fargo,

North Dakota. His research interests include database

http://www.excite.com/
http://www.yahoo.com/

Proceedings of the 17
th

 Association of Computing Machinery Scientific Applications Conference.

Madrid, Spain. March 10-14, 2002.

management systems, artificial intelligence, and multilevel secure

systems engineering. He has well over 40 journal and conference

paper publications. He is a member of Association of Computing

Machinery, Arab Computer Society and International Society for

Computers and Their Applications.

Mazen Hamdoun is currently pursuing his Masters of Science in

Computer Science at the Lebanese American University.

