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Abstract 
 

Web applications are increasingly relying on databases. The 

traditional method offered by most web sites of submitting a 

query across the Internet and getting a response from a server 

packed in a Hyper Text Markup Language page is no longer 

satisfying [1][3][4][5]. This is due to the result set: it is often too 

large or empty. This forces the user to try and guess which 

constraints should be relaxed or tightened in order to obtain the 

desired result set. And so, the user goes through several 

submit/response cycles. Web applications that require this sort 

of interactive exploration of databases need to use a model that 

is different from the submit/respond model described above. In 

this work, we propose an iterative querying model that 

integrates querying with result browsing. 

 

Keywords: Browsing, iterative querying, result set, and 

web-based database applications. 

 

1. Introduction 
 

In traditional databases, queries are rigid in that they are 

intended for asking very specific questions [2]. The results are 

interesting no matter what the result set is. The individual query 

itself is the goal. On the other hand, when we are interested in 

exploration the goal is locating particular records of interest. To 

do this, we need to provide the user with a combination of result 

browsing and searching so that he/she can see the query and its 

results simultaneously. As the user changes the query 

constraints, the impact on the result set should be immediate. 

 

The aim of this work is to provide how the overall design of 

such a system might be with some stress on the user interface, 

which is a key element in the exploration process. The rest of 

the paper is organized as follows: section 2 presents the user 

interface. Section 3 details the overall system design. Section 4 

concludes the paper.  
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2. User Interface 
 

The user interface plays a key role in enhancing the experience 

of the user. Records are displayed in a scrollable list format with 

a separate column for each numeric and categorical attribute as 

shown in Figure 1. At the top of each column is a title bar 

showing the name of the attribute. The names of the attributes 

are obtained from the database catalog. Beneath each of these 

titles is an "attribute control" used for specifying attribute 

restrictions. Categorical attributes are represented by select lists 

that allow users to (de) select (un) desired values. Numeric 

attributes are represented by vertical sliders, which may be 

resized and dragged to specify desired ranges. Initially, these 

attribute controls are maximized to include the full value-range 

of each attribute. Immediately, a user can see how many records 

are available, the value range of each attribute, and actual 

matching records. At any stage, the user can scroll through the 

list of records in the result set and can instantaneously change 

the sort order of the record list by clicking on the title bar of any 

column. 
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Figure 1. The Graphical User Interface. 

There is no "submit" button. As the user adjusts the attribute 

controls under each column's heading, the records in the view 

pane are continuously updated to reflect new restrictions. The 

record count is also continuously updated during these 

adjustments. This lets the user know immediately if the query is 

becoming too restrictive and whether or not the user should 
continue adding specifications. 

Contrast this iterative querying model with the conventional 

form-based approach [3]. The user would be entering 
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requirements into a static query page and would not know the 

result of the actions until the query is submitted and the 

response is received. If the query was restrictive, the user would 

most likely be presented with a short message indicating that no 

records matched the criteria, and that the user should try again. 

If the query was too loose, the user would probably be shown a 

single large listing of all matching records, or more likely, a 

series of linked pages containing twenty or so matching records 

per page. In both cases, no information is given as to how the 

query is to be relaxed or tightened, forcing the user to repeat this 

submit/response cycle as the user adjusts the requirements 

unaided. Each such cycle requires the attention of the web and 

database servers, not to forget a round-trip through the network. 

In the case of iterative querying, empty result sets can be easily 

avoided or backed out because the user can actually see the 

result set change as the query is tightened or relaxed. 

2.1 Exploration Based on Example Records 

Since query results are always visible, this allows a Query-By-

Example [6] capability not available in most search interfaces. 

Rather than explicitly specifying a desired range of attribute 

values, a user can select example records to direct the 

exploration. This type of querying can be very useful in 

situations where the user may not be too knowledgeable about 

the domain, but knows of some sample records of interest. For 

example, a user who does not know about horsepower or what a 

"fast" 0-100-kph time is can still search for sporty cars by 

selecting several known examples. These records implicitly 

define a query region comprising the smallest hypercube that 
contains all the selected data points. 

2.2 Exploration Based on Similarity 

In addition to querying by example, we can allow sorting by 

example as well. This is essentially similarity search, except that 

instead of treating similarity as a separate stand-alone query like 

some search engines do for web pages (e.g., Excite) [7], it is 

integrated into the existing view. After selecting one or more 

sample records, the user can click a button and sort all the 

records by how "near" they are to the selected examples. 

Nearness is based on some similarity model. The similarity 

scores are then displayed in a new column labeled "Rank" which 
appears after the rank button is pressed. 

3. System Design 

We now describe the details of how we implement iterative 

querying. In order to obtain interactive response times, we 

exploit several key observations. First we must cache data 

records in the local client. There is little chance of interactive 

response times unless the interaction between the user and data 

is moved off of the server and out of the network. While this 

does place a memory requirement on the client, it offers an 

advantage beyond that of just faster access - the cache can be 

tailored to the user and the particular task of data exploration. 

An initial query representing the set of data to be explored is 

used to transfer data from the server-side database. This data is 

then cached using special data structures for further exploration. 

In cases where users may wish to explore data outside the 

current cache, techniques such as semantic data caching can be 
used [8]. 

Fortunately, while the total size of the underlying database can 

be huge, the scope of the data over which a user performs 

interactive exploration for some task is often limited enough that 

corresponding records are able to fit in a reasonably sized cache. 

For example, in web-based product exploration applications, a 

user will explore options within one product category at a time 

and not across product categories. The active set thus typically 
consists of records in thousands and not millions.  

We also take advantage of the fact that there is always a notion 

of a current state. This state is represented by the current settings 

of the attribute controls (i.e., the "query") and the corresponding 

set of matching records. Every adjustment of these controls 

represents a minor change to an existing query. Rather than 

execute the new query entirely from scratch, we only need to 

update the current results to reflect the change. This can be 

made extremely efficient because of another observation: there 

is only one mouse. The user can adjust the restrictions of only 
one attribute at any given instance.  

By taking advantage of these observations, we are able to 

exhibit extremely fast response times, even with datasets 

containing hundreds of attributes and hundreds of thousands of 
records. 

3.1 Architecture 

Figure 2 gives a high-level overview of the proposed 

architecture. The DataColumn objects represent the data cache 

with each DataColumn representing one column of attribute 

data. DataGroup maintains this cache. Observe that with this 

design, data for different attributes can be loaded and processed 

asynchronously. Thus, during data loading, the user can see 

column data appear progressively, rather than having to wait for 

the entire dataset. Furthermore, once a column of input data has 

been loaded and its DataColumn object created, the user may 

immediately begin to restrict or sort on that column, even as 
other columns are still being loaded.  

ListRenderer represents the Graphical User Interface (GUI). It is 

responsible for rendering the current set of matching records, as 

well as passing user changes in attribute restrictions to the core 

engine. This interaction is handled by events and explicit 

Application Programming Interface (API) calls. 

The final piece labeled Core encompasses the entire design. In a 

Java implementation, this is the hosting applet that must deal 

with menus, graphical layout and other details. It is also 

responsible for determining what data source to use and what 

attributes to select. This is handled through user interaction. The 

Core component is also responsible for retrieving the data from 

the data source. It can do so through a standard API we call the 

DataPump. This design allows us to support various data 

sources by simply plugging in a different implementation of the 

DataPump API. In the particular instance shown in Figure 2, the 
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DataPump communicates via HTTP to a Java Servlet running 

on a web server. This Servlet uses JDBC to communicate with 

the database. When Core requests data via the DataPump API, 

the DataPump object passes the request to the Servlet, which in 

turn issues a query to the database. Data is returned to Core 

from the DataPump in column-order rather than row-order. This 

allows each column to be converted into DataColumn objects 

independently and asynchronously. How data is transferred 

between the server and the DataPump (row-order vs. column-

order, synchronous vs. asynchronous) is entirely up to the 

DataPump implementation.  

 

For concreteness, we will be describing the design using the 

example dataset shown in Figure 3. This dataset represents car 

listings and contains attribute data for the Make of each car and 

the Distance in miles between the user and seller locations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Architecture of the Model. 

Note that this example demonstrates how the data received and 

cached by the system can be tailored for a particular user - 

Distance is a derived attribute that depends upon the user and 

would not exist in the server's database. Each record in this 

dataset is uniquely identified by an integer in the range [0, n-1], 

called a record identifier, or RID. These RIDs are not part of the 

dataset and do not correspond to any database or server-side 

identifiers. They are simply internal IDs used in the cache, 
assigned sequentially as records are loaded from the server. 

RID Make Distance 

0 Ford 23 

1 Honda 3 

2 Ford 537 

3 Chrysler 117 

4 Honda 64 

5 Honda 8 

6 Chrysler 363 

7 Ford 192 

8 BMW 41 

9 Honda 89 

10 BMW 207 

Figure 3. A Dataset Example. 

 

3.1.1 DataColumns 

Each DataColumn is responsible for caching and indexing one 

attribute's worth of data. DataColumns consist of two basic 

components: an array of data values indexed by record 

identifier, and a RID-list. The RID-list contains RIDs sorted by 

their corresponding attribute value. RID-lists are required for 

performing fast attribute restrictions, but offer the additional 

benefit of pre-computed sorts. The DataColumn objects differ 

for numeric and categorical data types. 

Numeric DataColumns 

For numeric attributes, we allocate an integer or float array and 

copy incoming data values into it. At the same time, we allocate 

an integer array for the RID-list and store the RID values in 

order (from 0 to n-1, where n is the total number of records). 

The RID-list is then sorted by the corresponding attribute values, 

resulting in a final DataColumn object like the one shown in 

Figure 4. Observe that Data [RID-list [i]] gives the value of the 
ith item in the sorted list of data values. 

Categorical DataColumns 

Categorical DataColumns are somewhat more involved than 

numeric ones. In addition to a data array and a RID-list, 

categorical DataColumns also require a hash table and 

specialized objects called RIDSets. This is due to the fact that 

users need to be able to add and drop arbitrary categorical 

values to and from the query. A RIDSet object consists of three 

components: a categorical string value, an integer count value, 

and an integer index. 

RID-list Data 

1 23 

5 3 

0 537 

8 117 

4 64 

9 8 

3 363 

7 192 

10 41 

6 89 

2 207 

Figure 4. RID-list and Data. 

We first describe the creation of the categorical data array. 

Instead of allocating an array of strings to store the data values, 

an array of RIDSet references is allocated. Also allocated is an 

empty hash table. As the incoming categorical attribute data is 
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scanned, the hash table with each string value is probed first. If 

the probe fails (meaning this is the first time this categorical 

value is seen), a new RIDSet object is allocated. The string value 

is stored in the new RIDSet (RIDSet.value) and the RIDSet count 

(RIDSet.count) is set to one. RIDSet.count will eventually 

indicate the number of records that share this categorical value. 

The new RIDSet is then stored in the hash table, indexed by the 

string value. If the initial probe of the hash table does not fail, 

we will get back an existing RIDSet whose string value is the 

same as the current record. In this case, the RIDSet.count is 

simply incremented by one. In either situation, the current 

record's corresponding entry in the data array is set to point to 

this new RIDSet. Once the scan of the input data is finished, we 

will have exactly one RIDSet object per unique categorical 

value, and a fully initialized data array consisting of pointers to 

these RIDSets. At this point, the original categorical data can be 

discarded.  Figure 5 shows this state for a categorical 

DataColumn constructed from the Make attribute of our 

example dataset. Observe that if the data array is scanned in 

order and the string value of each referenced RIDSet is 

examined, the values seen will correspond exactly with the 
original input data. 

 

 

 

 

 

 

 

 

Figure 5. Make DataColumn (after input scan). 

Now a sorted RID-list for this DataColumn must be built. As a 

performance optimization, rather than sort an entire RID-list as 

is done for numeric DataColumns, each unique string value (or 

key) is collected and then sorted in a separate array. The number 

of keys should be smaller than the total number of records. This 

improves the sort cost. These keys can be retrieved from the 

RIDSets, the hash table, or collected during the data-scanning 

phase. In our running example, an array of 4 keys would be 

sorted. Next, a temporary variable called index is allocated and 

its value is set to zero. We then step through the sorted array of 

keys and for each key, the corresponding RIDSet object is 

retrieved from the hash table and RIDSet.index is set to be equal 

to the index. The index is then incremented by RIDSet.count and 

RIDSet.count is set to be equal to zero. Once this scan is 

completed, the index value of each RIDSet will indicate where 

in the RID-list we store the RIDs of those records that share 

RIDSet.value. At this point, the sorted list of keys can be 
discarded. 

The RID-list is now allocated and a scan of the DataColumn's 

data array is initiated. For each RIDSet encountered, the 

corresponding record's RID is stored in the RID-list at the 

position: RIDSet.index + RIDSet.count. RIDSet.count is then 

incremented by one. Figure 6 shows the completed DataColumn 

after this scan has finished, along with the temporary sorted 

array of key values. Note that the RID-list is now in sorted order 

and all the RIDSet.counts have been restored to their original 
value. 

3.1.2 DataGroup 

DataGroup manages the DataColumn objects and is the 

mechanism through which the ListRenderer interacts with the 

data cache. It also manages two other crucial items - the 

Restrictions array and the ResultSize counter. The Restrictions 

array is an array of integers, indexed by RID that keeps track of 

the number of restrictions against each record. If a record's 

restriction count is zero, then that record is unrestricted and 

belongs to the current result set; otherwise it does not. The 

ResultSize counter indicates the number of unrestricted records 

(i.e., the size of the current result set). 

 

 

 

                   

 

 

 

 

Figure 6. Categorical DataColumn for Make (completed). 

Initially, all the restriction counts are set to zero and ResultSize 

is set to the total number of records. When a record is restricted 

along some attribute, its corresponding restriction count is 

incremented (even if that record is already restricted along some 

other attribute). Likewise, whenever a record is unrestricted 

along some attribute, its restriction count is decremented. 

Additionally, whenever a record moves out of or into the result 

set (i.e., its restriction count is incremented from zero or 

decremented to zero), the ResultSize counter is decremented or 
incremented accordingly. 

3.2 Performance Restrictions 

We now discuss how the system uses the data structures just 

described to realize instantaneous response time for doing 

interactive exploration. As mentioned earlier, every change to an 
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attribute control in the GUI represents a change in state. A state 

change is always a tightening or relaxation of the restriction 

bounds on one attribute. The ListRenderer passes down state 

changes to the DataGroup object, which in turn passes the state 

change down to the appropriate DataColumn object for building 
the cache. 

Numerical Restrictions 

While the attribute controls in the GUI represent the current query 

state for the user, internally the current state is represented 

differently. The current state for numeric DataColumns is 

represented by two values, LowerIndex and UpperIndex. These 

values identify a sub range in the DataColumn's RID-list. Since 

the RID-list is sorted by attribute value, a sub range in the RID-

list corresponds to a sub range in attribute value. Initially, 

LowerIndex is set to 0 and UpperIndex is set to n-1. A state 

change on a numeric attribute always means that either the 
LowerIndex or the UpperIndex may have to change. 

Suppose in our car example, all attributes are currently 

unrestricted, meaning that LowerIndex and UpperIndex for the 

Distance DataColumn are currently set to 0 and n-1 respectively. 

The state change Distance < 100 now arrives indicating that the 

UpperIndex must be changed. Initiating a scan backwards 

through the RID-list from the current UpperIndex position does 

this. For each RID encountered, we lookup its corresponding 

attribute value in the data array and compare it to the new upper 

bound of 100. If the value lies outside the new boundary, we 

update the restriction information in the DataGroup and continue 

the scan. We stop once we reach a value that lies within the new 

boundary. The current scan position in the RID-list becomes the 
new value for UpperIndex.  

Categorical Restrictions 

For categorical attributes, state changes always involve a single 

categorical value being either restricted or unrestricted. For ease 

of exposition, assume that each RIDSet in a DataColumn has an 

additional Boolean flag that indicates whether or not that value is 

currently restricted. Together, these Boolean flags represent the 

current state for this attribute. When a state change arrives (e.g., 

Make - {Ford}, i.e., Ford is excluded), we retrieve the 

corresponding RIDSet from the hash table. We then scan the 

portion of the RID-list marked by RIDSet.index and RIDSet.count 

and update the DataGroup statistics accordingly. We also set the 

Boolean flag in the RIDSet to indicate the new state.  Note that 

the RIDSet structures allow us to examine only those RIDs that 

are relevant to the restriction. 

The processes described above are essentially identical when 

relaxing restrictions. The primary difference is in how the 

DataGroup statistics are updated and, for numeric DataColumns, 

in what direction the RID-list is scanned. It should be emphasized 

that when performing restrictions, we need only look at the data 

of the attribute involved. Additionally, we only examine data for 

those records actually affected by the restriction change. If a 

restriction change only affects 50 records, then we only examine 

those 50 records in one DataColumn, regardless of the total 
number of records or attributes. 

4. Conclusion 

We presented a model of a database exploration engine that 

implements iterative querying in web-based database 

applications. It has fast response time even when exploring 

hundreds of thousands of records containing hundreds of 

attributes. Query borders in our proposal can also be made non-

strict such that records that lie just outside the query region can 
still be included in the result set. 

The speed at which query changes are processed is enhanced by 

processing changes immediately rather than waiting for the user 

to hit a submit button. This not only results in small query 

changes that can be effected quickly, but also offers the 
additional advantage of immediate feedback for the user. 
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